3.3.98 \(\int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx\) [298]

3.3.98.1 Optimal result
3.3.98.2 Mathematica [C] (verified)
3.3.98.3 Rubi [A] (verified)
3.3.98.4 Maple [A] (verified)
3.3.98.5 Fricas [C] (verification not implemented)
3.3.98.6 Sympy [F(-1)]
3.3.98.7 Maxima [F]
3.3.98.8 Giac [F(-1)]
3.3.98.9 Mupad [F(-1)]

3.3.98.1 Optimal result

Integrand size = 27, antiderivative size = 244 \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a+a \sin (c+d x))^{3/2}}+\frac {e (e \cos (c+d x))^{3/2}}{4 d \sqrt {a+a \sin (c+d x)}}+\frac {3 e^{5/2} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d (a+a \cos (c+d x)+a \sin (c+d x))}+\frac {3 e^{5/2} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {1+\cos (c+d x)}}\right ) \sqrt {1+\cos (c+d x)} \sqrt {a+a \sin (c+d x)}}{4 d (a+a \cos (c+d x)+a \sin (c+d x))} \]

output
-1/2*a*(e*cos(d*x+c))^(7/2)/d/e/(a+a*sin(d*x+c))^(3/2)+1/4*e*(e*cos(d*x+c) 
)^(3/2)/d/(a+a*sin(d*x+c))^(1/2)+3/4*e^(5/2)*arcsinh((e*cos(d*x+c))^(1/2)/ 
e^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(a+a*cos(d*x+c)+a*s 
in(d*x+c))+3/4*e^(5/2)*arctan(sin(d*x+c)*e^(1/2)/(e*cos(d*x+c))^(1/2)/(1+c 
os(d*x+c))^(1/2))*(1+cos(d*x+c))^(1/2)*(a+a*sin(d*x+c))^(1/2)/d/(a+a*cos(d 
*x+c)+a*sin(d*x+c))
 
3.3.98.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.10 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.32 \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=-\frac {4 \sqrt [4]{2} (e \cos (c+d x))^{7/2} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {7}{4},\frac {11}{4},\frac {1}{2} (1-\sin (c+d x))\right )}{7 d e (1+\sin (c+d x))^{5/4} \sqrt {a (1+\sin (c+d x))}} \]

input
Integrate[(e*Cos[c + d*x])^(5/2)/Sqrt[a + a*Sin[c + d*x]],x]
 
output
(-4*2^(1/4)*(e*Cos[c + d*x])^(7/2)*Hypergeometric2F1[-1/4, 7/4, 11/4, (1 - 
 Sin[c + d*x])/2])/(7*d*e*(1 + Sin[c + d*x])^(5/4)*Sqrt[a*(1 + Sin[c + d*x 
])])
 
3.3.98.3 Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 257, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.481, Rules used = {3042, 3165, 3042, 3158, 3042, 3163, 3042, 25, 3254, 216, 3312, 63, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a \sin (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a \sin (c+d x)+a}}dx\)

\(\Big \downarrow \) 3165

\(\displaystyle \frac {1}{4} a \int \frac {(e \cos (c+d x))^{5/2}}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \int \frac {(e \cos (c+d x))^{5/2}}{(\sin (c+d x) a+a)^{3/2}}dx-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3158

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \int \frac {\sqrt {e \cos (c+d x)}}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \int \frac {\sqrt {e \cos (c+d x)}}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3163

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\cos (c+d x)+1}}{\sqrt {e \cos (c+d x)}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int -\frac {\cos \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )+1}}{\sqrt {e \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}+\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3254

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}-\frac {2 e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x)}{\cos (c+d x)+1}+1}d\left (-\frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )}{\sqrt {e \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )} \sqrt {\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )+1}}dx}{a \sin (c+d x)+a \cos (c+d x)+a}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3312

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {e \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {e \cos (c+d x)} \sqrt {\cos (c+d x)+1}}d\cos (c+d x)}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 63

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {2 \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \int \frac {1}{\sqrt {\cos (c+d x)+1}}d\sqrt {e \cos (c+d x)}}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{4} a \left (\frac {3 e^2 \left (\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \text {arcsinh}\left (\frac {\sqrt {e \cos (c+d x)}}{\sqrt {e}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}+\frac {2 \sqrt {e} \sqrt {\cos (c+d x)+1} \sqrt {a \sin (c+d x)+a} \arctan \left (\frac {\sqrt {e} \sin (c+d x)}{\sqrt {\cos (c+d x)+1} \sqrt {e \cos (c+d x)}}\right )}{d (a \sin (c+d x)+a \cos (c+d x)+a)}\right )}{2 a}+\frac {e (e \cos (c+d x))^{3/2}}{a d \sqrt {a \sin (c+d x)+a}}\right )-\frac {a (e \cos (c+d x))^{7/2}}{2 d e (a \sin (c+d x)+a)^{3/2}}\)

input
Int[(e*Cos[c + d*x])^(5/2)/Sqrt[a + a*Sin[c + d*x]],x]
 
output
-1/2*(a*(e*Cos[c + d*x])^(7/2))/(d*e*(a + a*Sin[c + d*x])^(3/2)) + (a*((e* 
(e*Cos[c + d*x])^(3/2))/(a*d*Sqrt[a + a*Sin[c + d*x]]) + (3*e^2*((2*Sqrt[e 
]*ArcSinh[Sqrt[e*Cos[c + d*x]]/Sqrt[e]]*Sqrt[1 + Cos[c + d*x]]*Sqrt[a + a* 
Sin[c + d*x]])/(d*(a + a*Cos[c + d*x] + a*Sin[c + d*x])) + (2*Sqrt[e]*ArcT 
an[(Sqrt[e]*Sin[c + d*x])/(Sqrt[e*Cos[c + d*x]]*Sqrt[1 + Cos[c + d*x]])]*S 
qrt[1 + Cos[c + d*x]]*Sqrt[a + a*Sin[c + d*x]])/(d*(a + a*Cos[c + d*x] + a 
*Sin[c + d*x]))))/(2*a)))/4
 

3.3.98.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 63
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b   S 
ubst[Int[1/Sqrt[c + d*(x^2/b)], x], x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x 
] && GtQ[c, 0]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3158
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x 
])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(a*(m + p)))   Int[(g*Cos 
[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || 
 EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p, 0] && In 
tegersQ[2*m, 2*p]
 

rule 3163
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x 
]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x]))   Int[Sqrt[1 + Cos[e + f*x]]/Sqrt 
[g*Cos[e + f*x]], x], x] - Simp[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e 
+ f*x]]/(b + b*Cos[e + f*x] + a*Sin[e + f*x]))   Int[Sin[e + f*x]/(Sqrt[g*C 
os[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, g}, x] & 
& EqQ[a^2 - b^2, 0]
 

rule 3165
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_. 
)*(x_)]], x_Symbol] :> Simp[-2*b*((g*Cos[e + f*x])^(p + 1)/(f*g*(2*p - 1)*( 
a + b*Sin[e + f*x])^(3/2))), x] + Simp[2*a*((p - 2)/(2*p - 1))   Int[(g*Cos 
[e + f*x])^p/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x 
] && EqQ[a^2 - b^2, 0] && GtQ[p, 2] && IntegerQ[2*p]
 

rule 3254
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b + d*x^2), x], 
x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))], x 
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] 
 && NeQ[c^2 - d^2, 0]
 

rule 3312
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*(( 
c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b*f)   Su 
bst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, 
b, c, d, e, f, m, n}, x]
 
3.3.98.4 Maple [A] (verified)

Time = 6.77 (sec) , antiderivative size = 326, normalized size of antiderivative = 1.34

method result size
default \(\frac {\left (3 \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-3 \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+2 \left (\cos ^{3}\left (d x +c \right )\right )+2 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-3 \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )-\left (\cos ^{2}\left (d x +c \right )\right )+3 \cos \left (d x +c \right ) \sin \left (d x +c \right )-3 \cos \left (d x +c \right )\right ) \sqrt {e \cos \left (d x +c \right )}\, e^{2}}{4 d \left (\cos \left (d x +c \right )-\sin \left (d x +c \right )+1\right ) \sqrt {a \left (1+\sin \left (d x +c \right )\right )}}\) \(326\)

input
int((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/4/d*(3*arctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1 
/2))*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-3*arctan((-cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2))*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)+2*cos( 
d*x+c)^3+2*cos(d*x+c)^2*sin(d*x+c)+3*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ar 
ctanh(sin(d*x+c)/(1+cos(d*x+c))/(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-3*(-co 
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan((-cos(d*x+c)/(1+cos(d*x+c)))^(1/2))- 
cos(d*x+c)^2+3*cos(d*x+c)*sin(d*x+c)-3*cos(d*x+c))*(e*cos(d*x+c))^(1/2)*e^ 
2/(cos(d*x+c)-sin(d*x+c)+1)/(a*(1+sin(d*x+c)))^(1/2)
 
3.3.98.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.48 (sec) , antiderivative size = 1147, normalized size of antiderivative = 4.70 \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas 
")
 
output
1/16*(3*(-e^10/(a^2*d^4))^(1/4)*(a*d*cos(d*x + c) + a*d*sin(d*x + c) + a*d 
)*log(27/2*(2*(e^7*sin(d*x + c) + (a*d^2*e^2*cos(d*x + c) + a*d^2*e^2)*sqr 
t(-e^10/(a^2*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d*x + c) + a) + (2*a^2 
*d^3*cos(d*x + c)^2 + a^2*d^3*cos(d*x + c) - a^2*d^3*sin(d*x + c) - a^2*d^ 
3)*(-e^10/(a^2*d^4))^(3/4) + (a*d*e^5*cos(d*x + c) + a*d*e^5 + (2*a*d*e^5* 
cos(d*x + c) + a*d*e^5)*sin(d*x + c))*(-e^10/(a^2*d^4))^(1/4))/(cos(d*x + 
c) + sin(d*x + c) + 1)) - 3*(-e^10/(a^2*d^4))^(1/4)*(a*d*cos(d*x + c) + a* 
d*sin(d*x + c) + a*d)*log(27/2*(2*(e^7*sin(d*x + c) + (a*d^2*e^2*cos(d*x + 
 c) + a*d^2*e^2)*sqrt(-e^10/(a^2*d^4)))*sqrt(e*cos(d*x + c))*sqrt(a*sin(d* 
x + c) + a) - (2*a^2*d^3*cos(d*x + c)^2 + a^2*d^3*cos(d*x + c) - a^2*d^3*s 
in(d*x + c) - a^2*d^3)*(-e^10/(a^2*d^4))^(3/4) - (a*d*e^5*cos(d*x + c) + a 
*d*e^5 + (2*a*d*e^5*cos(d*x + c) + a*d*e^5)*sin(d*x + c))*(-e^10/(a^2*d^4) 
)^(1/4))/(cos(d*x + c) + sin(d*x + c) + 1)) - 3*(-e^10/(a^2*d^4))^(1/4)*(- 
I*a*d*cos(d*x + c) - I*a*d*sin(d*x + c) - I*a*d)*log(27/2*(2*(e^7*sin(d*x 
+ c) - (a*d^2*e^2*cos(d*x + c) + a*d^2*e^2)*sqrt(-e^10/(a^2*d^4)))*sqrt(e* 
cos(d*x + c))*sqrt(a*sin(d*x + c) + a) - (2*I*a^2*d^3*cos(d*x + c)^2 + I*a 
^2*d^3*cos(d*x + c) - I*a^2*d^3*sin(d*x + c) - I*a^2*d^3)*(-e^10/(a^2*d^4) 
)^(3/4) - (-I*a*d*e^5*cos(d*x + c) - I*a*d*e^5 + (-2*I*a*d*e^5*cos(d*x + c 
) - I*a*d*e^5)*sin(d*x + c))*(-e^10/(a^2*d^4))^(1/4))/(cos(d*x + c) + sin( 
d*x + c) + 1)) - 3*(-e^10/(a^2*d^4))^(1/4)*(I*a*d*cos(d*x + c) + I*a*d*...
 
3.3.98.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))**(5/2)/(a+a*sin(d*x+c))**(1/2),x)
 
output
Timed out
 
3.3.98.7 Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {5}{2}}}{\sqrt {a \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima 
")
 
output
integrate((e*cos(d*x + c))^(5/2)/sqrt(a*sin(d*x + c) + a), x)
 
3.3.98.8 Giac [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((e*cos(d*x+c))^(5/2)/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")
 
output
Timed out
 
3.3.98.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{5/2}}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

input
int((e*cos(c + d*x))^(5/2)/(a + a*sin(c + d*x))^(1/2),x)
 
output
int((e*cos(c + d*x))^(5/2)/(a + a*sin(c + d*x))^(1/2), x)